Answer:
a) R(x) = -0.03*x² + 820*x
b) R´(x) = - 0.06*x + 820
c) R´(5600) = 484 units)
Step-by-step explanation:
a) We have unit price of the product
p(x) = - 0,03*x + 820 where 0 ≤ x ≤ 20000
Then Revenue Function
R(x) = x*p(x) ⇒ R(x) = x* ( - 0.03*x + 820)
R(x) = -0.03*x² + 820*x
b) The Marginal Revenue Function is:
We get derivatives to get that function
R´(x) = -2*0.03*x + 820
R´(x) = - 0.06*x + 820
c) Compute
R´(5600) ??
R´(x) = - 0.06*x + 820
for x = 5600
R´(5600) = -0.06 ( 5600) + 820
R´(5600) = 484 units