contestada

If the numerator of a fraction is increased by six, the value of the fraction will increase by one. If the denominator of the original fraction is increased by 36, the value of the original fraction will decrease by one. What is the original fraction?


THANKS!!!!!! :)

Respuesta :

frika

Answer:

[tex]\dfrac{7}{6}[/tex]

Step-by-step explanation:

Let [tex]\dfrac{a}{b}[/tex] be the original fraction.

If the numerator of a fraction is increased by six, the value of the fraction will increase by one. Hence,

[tex]\dfrac{a+6}{b}=\dfrac{a}{b}+1[/tex]

If the denominator of the original fraction is increased by 36, the value of the original fraction will decrease by one. Hence,

[tex]\dfrac{a}{b+36}=\dfrac{a}{b}-1[/tex]

Add these two equalities:

[tex]\dfrac{a+6}{b}+\dfrac{a}{b+36}=\dfrac{a}{b}+1+\dfrac{a}{b}-1\\ \\\dfrac{a+6}{b}+\dfrac{a}{b+36}=2\dfrac{a}{b}\\ \\\dfrac{a}{b+36}=\dfrac{2a-(a+6)}{b}\\ \\\dfrac{a}{b+36}=\dfrac{a-6}{b}\\ \\ab=(a-6)(b+36)\\ \\ab=ab+36a-6b-216\\ \\36a-6b-216=0\\ \\6a-b-36=0\\ \\b=6a-36[/tex]

Substitute it into the first equation:

[tex]\dfrac{a+6}{6a-36}=\dfrac{a}{6a-36}+1\\ \\\dfrac{a+6}{6(a-6)}=\dfrac{a}{6(a-6)}+1\\ \\a+6=a+6(a-6)\\ \\a+6=a+6a-36\\ \\6a=6+36\\ \\6a=42\\ \\a=7\\ \\b=6\cdot 7-36=42-36=6[/tex]

Thus, the initial fraction was

[tex]\dfrac{7}{6}[/tex]

Answer:

7/6

Step-by-step explanation:

eeeeeeeeeeeeeeeeee U ALSO DO ALCUMUS AND NEED HELP I'LL BE HERE