Answer:
11.03 moles of photons, with wavelength of 12 cm, must be absorbed to raise the temperature of your eye by 3.0 ºC.
Explanation:
Mass of eye = m = 11 g
The specific heat capacity = c = 4.0 J/g°C
Change in temperature = ΔT = 3.0°C
Heat required to raise the temperature = Q
[tex]Q=mc\times \Delta T[/tex]
[tex]Q=11g\times 4.0\times J/g^oC\times 3.0^oC=132 J[/tex]
Energy of the photon = E
Wavelength of the photon [tex]\lambda [/tex]= 12 cm = 0.12 m (1 cm = 0.01 m)
[tex]E=\frac{hc}{\lambda }[/tex] (Planck's equation)
[tex]E=\frac{6.626\times 10^{-34} Js\times 3\times 10^8 m/s}{0.01 m}[/tex]
[tex]E=1.9878\times 10^{-23} J[/tex]
[tex]Q=nE[/tex]
[tex]n=\frac{Q}{E}=\frac{132 J}{1.9878\times 10^{-23} J}[/tex]
[tex]n=6.6405\times 10^{24}[/tex]
[tex]1 mole = 6.022\times 10^{23} mol^{-1}[/tex]
Moles of photons :
[tex]=\frac{6.6405\times 10^{24}}{6.022\times 10^{23} mol^{-1}}[/tex]
[tex]=11.03 mol[/tex]
11.03 moles of photons, with wavelength of 12 cm, must be absorbed to raise the temperature of your eye by 3.0 ºC.