An astronaut is in equilibrium when he is positioned 140 km from the center of asteroid C and 581 km from the center of asteroid Y, along the straight line joining the centers of the asteroids. What is the ratio of the masses X/Y of the asteroids?A. 17.2B. 0.0581C. 0.241D. 4.15

Respuesta :

Answer:B

Explanation:

Given

Distance of astronaut From asteroid x is [tex]r_x=140 km[/tex]

Distance of astronaut From asteroid Y is [tex]r_y=581 km[/tex]

Suppose M,M_x,M_y be the masses of Astronaut , asteroid X and Y

If the astronaut is in equilibrium then net gravitational force on it is zero

[tex]F_x=F_y[/tex]

[tex]\frac{GMM_x}{r_x^2}=\frac{GMM_y}{r_y^2}[/tex]

cancel out the common terms we get

[tex]\frac{M_x}{r_x^2}=\frac{M_y}{r_y^2}[/tex]

[tex]\frac{M_x}{M_y}=(\frac{r_x}{r_y})^2[/tex]

[tex]\frac{M_x}{M_y}=(\frac{140}{581})^2[/tex]

[tex]\frac{M_x}{M_y}=0.05806\approx 0.0581[/tex]