Answer:
[tex]h(x)=x^3-17x-4[/tex]
Step-by-step explanation:
Given [tex]f(x)=x^2 - 4x -1\ and\ g(x)=x+4\\[/tex]
[tex]h(x)=f(x)\times g(x)[/tex]
[tex](x^2-4x-1)(x+4)\ \ \\Distribute\ parenthesis\\=x^2x+x^2\times \:4+\left(-4x\right)x+\left(-4x\right)\times \:4+\left(-1\right)x+\left(-1\right)\times \:4[/tex]
Apply minus-plus rules
[tex]+(-a)=-a[/tex]
[tex]=x^2x+4x^2-4x(x)-4\times\:4x-1\times\:x-1\times\:4[/tex]
[tex]\\Simplify\\=x^3+4x^2-4x^2-16x-x-4\\=x^3-16x-x-4\\=x^3-17x-4[/tex]
[tex]h(x)=x^3-17x-4[/tex]