Answer:
The ratio, [tex]R_{\theta}[/tex] is 2
Solution:
As per the question:
Wavelength, [tex]\lambda = 614\ nm = 614\times 10^{- 9}\ m[/tex]
Single slit width, w = [tex]3.75\ mu m[/tex]
Now,
We know from the eqn for diffraction:
[tex]n\lambda = wsin\theta[/tex]
Now,
For single slit:
n = 1
[tex]\lambda = wsin\theta_{s}[/tex]
[tex]sin\theta = \frac{\lambda}{w}[/tex]
For very small angle:
[tex]sin\theta[/tex] ≈ [tex]\theta[/tex]
[tex]\theta = \frac{\lambda}{w}[/tex] (1)
For double slit:
n = 2
Thus
[tex]2\lambda = wsin\theta_{s}[/tex]
[tex]sin\theta' = \frac{\lambda}{2w}[/tex]
For very small angle:
[tex]sin\theta[/tex] ≈ [tex]\theta[/tex]
[tex]\theta' = \frac{\lambda}{2w}[/tex] (2)
For the ratio, [tex]R_{\theta}[/tex], we divide en (1) by eqn (2):
[tex]R_{\theta} = \frac{\frac{\lambda}{w}}{\frac{\lambda}{2w}} = 2[/tex]