A hoop, a uniform solid cylinder, a spherical shell, and a uniform solid sphere are released from rest at the top of an incline. What is the order in which they arrive at the bottom of the incline?

Respuesta :

Answer:

Step-by-step explanation:

Given

Hoop, Uniform Solid Cylinder, Spherical shell and a uniform Solid sphere released from Rest from same height

Suppose they have same mass and radius

time Period is given by

[tex]t=\sqrt{\frac{2h}{a}}[/tex] ,where h=height of release

a=acceleration

[tex]a=\frac{g\sin \theta }{1+\frac{I}{mr^2}}[/tex]

Where I=moment of inertia

a for hoop

[tex]a=\frac{g\sin \theta }{1+\frac{mr^2}{mr^2}}[/tex]

[tex]a=\frac{g\sin \theta }{2}[/tex]

a for Uniform solid cylinder

[tex]a=\frac{g\sin \theta }{1+\frac{mr^2}{2mr^2}}[/tex]

[tex]a=\frac{2g\sin \theta }{3}[/tex]

a for spherical shell

[tex]a=\frac{g\sin \theta }{1+\frac{2mr^2}{3mr^2}}[/tex]

[tex]a=\frac{3g\sin \theta }{5}[/tex]

a for Uniform Solid

[tex]a=\frac{g\sin \theta }{1+\frac{2mr^2}{5mr^2}}[/tex]

[tex]a=\frac{5g\sin \theta }{7}[/tex]

time taken will be inversely proportional to the square root of acceleration

[tex]t_1=k\sqrt{2}=1.414k[/tex]

[tex]t_2=k\sqrt{\frac{3}{2}}=1.224k[/tex]

[tex]t_3=k\sqrt{\frac{5}{3}}=1.2909k[/tex]

[tex]t_4=k\sqrt{\frac{7}{5}}=1.183k[/tex]

thus first one to reach is Solid Sphere

second is Uniform solid cylinder

third is Spherical Shell

Fourth is hoop