Answer:
Output voltage is 1.507 mV
Solution:
As per the question:
Nominal resistance, R = [tex]120\Omega [/tex]
Fixed resistance, R = [tex]120\Omega [/tex]
Gauge Factor, G.F = 2.01
Supply Voltage, [tex]V_{s} = 3\ V[/tex]
Strain, [tex]\epsilon = 1000\times 10^{-6}\ strain[/tex]
Now,
To calculate the output voltage, [tex]V_{o}[/tex]:
WE know that strain is given by:
[tex]\epsilon = \frac{(R + R')^{2}V_{o}}{RR'V_{s}\times G.F}[/tex]
Thus
[tex]V_{o} = \frac{RR'V_{s}\epsilon \times G.F}{(R + R')^{2}}[/tex]
Now, substituting the suitable values in the above eqn:
[tex]V_{o} = \frac{120\times 120\times 3\times 1000\times 10^{-6}\times 2.01}{(120 + 120)^{2}}[/tex]
[tex]V_{o} = 1.507\ mV[/tex]