Respuesta :

Answer:

The coordinate of point C is (4 , - 6)  .

Step-by-step explanation:

Given as ;

The Δ ADC and The Δ DCB are divided in the ratio = m : n = 3 : 4

The coordinate of point A = [tex]x_1 , y _1[/tex] = 1 , - 9

The coordinate of point B = [tex]x_2 , y _2[/tex] = 8 , -2

Let The coordinate of point C = x , y

Now, According to question

x = [tex]\frac{m \times x_2 + n\times x_1}{m + n}[/tex]

Or, x =  [tex]\frac{3 \times 8 + 4\times 1}{3 + 4}[/tex]

Or, x = [tex]\frac{24 + 4}{7}[/tex]

∴  x =  [tex]\frac{28}{7}[/tex]

i.e x = 4

Similarly

y = [tex]\frac{m \times y_2 + n\times y_1}{m + n}[/tex]

Or, y =  [tex]\frac{3 \times (-2) + 4\times (-9)}{3 + 4}[/tex]

Or, y = [tex]\frac{ - 6 - 36}{7}[/tex]

∴  y =  [tex]\frac{- 42}{7}[/tex]

i.e y = - 6

So, The coordinate of point C = x , y = 4 , - 6

Hence,The coordinate of point C is (4 , - 6)  . Answer

Answer: I think its C

Step-by-step explanation: