Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = yzi + 4xzj + exyk, C is the circle x2 + y2 = 9, z = 3.Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = yzi + 4xzj + exyk, C is the circle x2 + y2 = 9, z = 3.

Respuesta :

Answer:

The result of the integral is 81π

Step-by-step explanation:

We can use Stoke's Theorem to evaluate the given integral, thus we can write first the theorem:

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S curl \vec F \cdot d\vec S[/tex]

Finding the curl of F.

Given [tex]F(x,y,z) = < yz, 4xz, e^{xy} >[/tex] we have:

[tex]curl \vec F =\left|\begin{array}{ccc} \hat i &\hat j&\hat k\\ \cfrac{\partial}{\partial x}& \cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\yz&4xz&e^{xy}\end{array}\right|[/tex]

Working with the determinant we get

[tex]curl \vec F = \left( \cfrac{\partial}{\partial y}e^{xy}-\cfrac{\partial}{\partial z}4xz\right) \hat i -\left(\cfrac{\partial}{\partial x}e^{xy}-\cfrac{\partial}{\partial z}yz \right) \hat j + \left(\cfrac{\partial}{\partial x} 4xz-\cfrac{\partial}{\partial y}yz \right) \hat k[/tex]

Working with the partial derivatives

[tex]curl \vec F = \left(xe^{xy}-4x\right) \hat i -\left(ye^{xy}-y\right) \hat j + \left(4z-z\right) \hat k\\curl \vec F = \left(xe^{xy}-4x\right) \hat i -\left(ye^{xy}-y\right) \hat j + \left(3z\right) \hat k[/tex]

Integrating using Stokes' Theorem

Now that we have the curl we can proceed integrating

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S curl \vec F \cdot d\vec S[/tex]

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S curl \vec F \cdot \hat n dS[/tex]

where the normal to the circle is just [tex]\hat n= \hat k[/tex] since the normal is perpendicular to it, so we get

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S \left(\left(xe^{xy}-4x\right) \hat i -\left(ye^{xy}-y\right) \hat j + \left(3z\right) \hat k\right) \cdot \hat k dS[/tex]

Only the z-component will not be 0 after that dot product we get

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S 3z dS[/tex]

Since the circle is at z = 3 we can just write

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = \int \int_S 3(3) dS\\\displaystyle \int\limits_C \vec F \cdot d\vec r = 9\int \int_S dS[/tex]

Thus the integral represents the area of a circle, the given circle [tex]x^2+y^2 = 9[/tex] has a radius r = 3, so its area is [tex]A = \pi r^2 = 9\pi[/tex], so we get

[tex]\displaystyle \int\limits_C \vec F \cdot d\vec r = 9(9\pi)\\\displaystyle \int\limits_C \vec F \cdot d\vec r = 81 \pi[/tex]

Thus the result of the integral is 81π

Otras preguntas