Respuesta :

Answer:

The solution for the given equation is 0 and 2.

Step-by-step explanation:

Given equation:

[tex]2-9|-8b+8|=-70[/tex]

To solve for [tex]b[/tex].

Solution:

In order to solve the given equation, we will first isolate the absolute value expression:

Step 1: Isolating the absolute value expression

[tex]2-9|-8b+8|=-70[/tex]

Subtracting both sides by 2.

[tex]2-2-9|-8b+8|=-70-2[/tex]

[tex]-9|-8b+8|=-72[/tex]

Dividing both sides by -9.

[tex]\frac{-9|-8b+8|}{-9}=\frac{-72}{-9}[/tex]

[tex]|-8b+8|=8[/tex]

Step 2: Set the value of the absolute value expression to positive and negative.

[tex]-8b+8=8[/tex]              and       [tex]-8b+8=-8[/tex]

Step 3: Solve for the unknown.

Solving for [tex]b[/tex].

Subtracting both sides by 8.

[tex]-8b+8-8=8-8[/tex]       and       [tex]-8b+8-8=-8-8[/tex]

[tex]-8b=0[/tex]                  and       [tex]-8b=-16[/tex]

Dividing both sides by -8.

[tex]\frac{-8b}{-8}=\frac{0}{-8}[/tex]          and       [tex]\frac{-8b}{-8}=\frac{-16}{-8}[/tex]

[tex]b=0[/tex]       and       [tex]b=2[/tex]     (Answer)

Thus, the solution for the given equation is 0 and 2.