Respuesta :
Answer:
ΔEFG is an isosceles triangle.
Step-by-step explanation:
Given:
E (0, 0),
F (−7, 4),
G (0, 8)
ΔEFG
Solution:
Distance formula
Distance d = [tex]\sqrt{(x_2-x_1)^2 +( y_2-y_1)^2[/tex]
Step 1: Finding the length of EF
By using distance formula,
[tex]EF = \sqrt{(-7 - 0)^2 + (4-0)^2}[/tex]
[tex]EF = \sqrt{(49) + (16)}[/tex]
[tex]EF = \sqrt{(49) + (16)}\\EF = \sqrt{65}\\[/tex]
Step 2: Finding the length of FG
By using distance formula,
[tex]FG = \sqrt{(0-(-7))^2+(8-4)^2}\\FG = \sqrt{(7)^2 +(4)^2}\\FG = \sqrt{49 +16}\\FG = \sqrt{65}[/tex]
Step 2: Finding the length of GE
[tex]GE= \sqrt{(0-0)^2 + (0-8)^2}\\\\GE =\sqrt{(-8)^2}\\GE = \sqrt{64}\\GE = 8[/tex]
Thus we could see that the sides EF = FG
So it is a isosceles triangle.
