Respuesta :

Answer:

[tex]x=\sqrt{21}[/tex]

[tex]y=\sqrt{21}[/tex]

Step-by-step explanation:

Let x  and y are the two positive real numbers

product of two numbers is 21

[tex]x y=21[/tex]

[tex]y=\frac{21}{x}[/tex]

The sum of the two numbers is f(x) =x+y

Replace y with 21/x

[tex]f(x) =x+\frac{21}{x}[/tex]

we need to find smallest possible sum , so we take derivative using power rule

[tex]f'(x)= 1-\frac{21}{x^2}[/tex]

when sum is minimum then the derivative is equal to 0

[tex]0= 1-\frac{21}{x^2}[/tex]

[tex]0=\frac{x^2-21}{x^2}[/tex]

multiply both sides by x^2

[tex]x^2-21=0[/tex]

[tex]x^2=21[/tex]

Take square root on both sides

[tex]x=\sqrt{21}[/tex]

[tex]y=\frac{21}{x}[/tex]

[tex]y=\frac{21}{\sqrt{21}}[/tex]

[tex]y=\sqrt{21}[/tex]