contestada

An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm. The coil lies in the plane of the page and carries a clockwise current of 6.20 A. If the coil is in a uniform magnetic field of 1.98 10-4 T directed toward the left of the page, what is the magnitude of the torque on the coil? Hint: The area of an ellipse is A = ?ab, where a and b are, respectively, the semimajor and semiminor axes of the ellipse.

Respuesta :

Answer:

9.25 x 10^-4 Nm

Explanation:

number of turns, N = 8

major axis = 40 cm

semi major axis, a = 20 cm = 0.2 m

minor axis = 30 cm

semi minor axis, b = 15 cm = 0.15 m

current, i = 6.2 A

Magnetic field, B = 1.98 x 10^-4 T

Angle between the normal and the magnetic field is 90°.

Torque is given by

τ = N i A B SinФ

Where, A be the area of the coil.

Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²

τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°

τ = 9.25 x 10^-4 Nm

thus, the torque is 9.25 x 10^-4 Nm.

The magnitude of the torque on the coil is 9.25 x 10⁻⁴ Nm

Torque:

According to the question we have the following data:

Number of turns of the coil N = 8

Semi-major axis of the ellipse a = 40/2 cm = 0.2 m

Semi-minor axis, b = 30/2 cm = 0.15 m

Current in the coil, i = 6.2 A

Magnetic field, B = 1.98 x 10⁻⁴ T

The angle between the normal and the magnetic field is 90°.

So the torque on the coil is given by:

τ = NiABsinθ

Now, the area of ellipse:

A = πab

A = 3.14 x 0.20 x 0.15 = 0.0942 m²

Thus,

τ = 8 x 6.20 x 0.0942 x 1.98 x 10⁻⁴ x sin 90°

τ = 9.25 x 10⁻⁴ Nm

Learn more about torque:

https://brainly.com/question/6855614?referrer=searchResults