Answer:
The probability that they sit next to each other is 50%.
Step-by-step explanation:
Consider the provided information.
It is given that there are four seats within the row are first come, first served during boarding.
There are 4 seats and 2 customers (Karen and Georgia)
The total number of ways in which Karen and Georgia can sit is: [tex]^4C_2[/tex]
Now if they will sit together, then consider Karen and Georgia as a single unit.
Thus, the number of ways in which they can sit together is: [tex]^3C_1[/tex]
The required probability is:
[tex]P=\frac{^3C_1}{^4C_2} \\\\P=\frac{3}{6}\\\\P=\frac{1}{2}[/tex]
Hence, the probability that they sit next to each other is 50%.