Respuesta :

Answer:

OPTION C

Step-by-step explanation:

We are given the expression: [tex]$ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5}} $[/tex]

We multiply and divide the expression by the conjugate of the denominator.

So, we will get:

[tex]$ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5}} = \frac{\sqrt{x}.(\sqrt{x} - \sqrt{5})}{\sqrt{x} + \sqrt{5} . \sqrt{x} - \sqrt{5}} $[/tex]

[tex]$ \sqrt{x} + \sqrt{5}. \sqrt{x} - \sqrt{5} = x - 5 $[/tex] since it is of the form (a + b)(a - b) which is equal to [tex]$ a^2 - b ^2 $[/tex].

[tex]$ \therefore \frac{\sqrt{x}{(\sqrt{x} - \sqrt{5})}}{x - 5} = \frac{\sqrt{x}.\sqrt{x}- \sqrt{5x}}{x - 5}$[/tex]

[tex]$ = \frac{x - \sqrt{5x}}{x - 5} $[/tex]

Hence, OPTION C is the answer.

Answer:

c on edge 2021

Step-by-step explanation:

took the test