Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is [tex] 3.64 m^3[/tex].
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 104 kPa
[tex]P_2[/tex] = final pressure of gas = 52 kPa
[tex]V_1[/tex] = initial volume of gas = [tex]2.0m^3[/tex]
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]21.1^oC=273+21.1=294.1K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]-5.0^oC=273+(-5.0)=268 K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{104 kPa\times 2.0m^3}{294.1 K}=\frac{52 kPa\times V_2}{268 K}[/tex]
[tex]V_2=3.64 m^3[/tex]
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is [tex] 3.64 m^3[/tex].