Respuesta :

Answer:

[tex]y=(\frac{5}{4})^x[/tex]

[tex]y=5^x[/tex]

Step-by-step explanation:

we know that

In a exponential function of the form

[tex]y=a(b^x)[/tex]

where

a is the initial value

b is the base

If the value of b >1 ----> then is a exponential growth

If the value of b <1 ----> then is a exponential decay

Verify each case

case a) we have

[tex]y=(\frac{5}{4})^x[/tex]

[tex]b=\frac{5}{4}[/tex]

b> 1

therefore

The function represent exponential growth

case b) we have

[tex]y=(4)^{-x}[/tex]

[tex]b=\frac{1}{4}[/tex]

b< 1

therefore

The function represent exponential decay

case c) we have

[tex]y=5^x[/tex]

[tex]b=5[/tex]

b> 1

therefore

The function represent exponential growth

case d) we have

[tex]y=(\frac{4}{5})^x[/tex]

[tex]b=\frac{4}{5}[/tex]

b< 1

therefore

The function represent exponential decay