Respuesta :

Answer:

Option A

[tex]m\angle LQR=126^o[/tex]

Step-by-step explanation:

step 1

Find the value of b

we know that

[tex]m\angle MQR=m\angle LQX[/tex] ----> by vertical angles

substitute the given values

[tex](-3b+63)^o=(90-12b)^o[/tex]

solve for b

[tex]12b-3b=90-63\\9b=27\\b=3[/tex]

step 2

Find the measure of angle LQR

we know that

[tex]m\angle LQR+m\angle MQR=180^o[/tex] ---> by supplementary angles (form a linear pair)

[tex]m\angle MQR=(-3b+63)^o[/tex]

substitute the value of b

[tex]m\angle MQR=(-3(3)+63)=54^o[/tex]

substitute in the expression above

[tex]m\angle LQR+54^o=180^o[/tex]

[tex]m\angle LQR=180^o-54^o=126^o[/tex]