What are the zeros of the quadratic function f(x) = 2x2 + 8x – 3? x = –2 – StartRoot StartFraction 11 Over 2 EndFraction EndRoot and x = –2 + StartRoot StartFraction 11 Over 2 EndFraction EndRoot x = –2 – StartRoot StartFraction 7 Over 2 EndFraction EndRoot and x = –2 + StartRoot StartFraction 7 Over 2 EndFraction EndRoot x = 2 – StartRoot StartFraction 11 Over 2 EndFraction EndRoot and x = 2 + StartRoot StartFraction 11 Over 2 EndFraction EndRoot x = 2 – StartRoot StartFraction 7 Over 2 EndFraction EndRoot and x = 2 + StartRoot StartFraction 7 Over 2 EndFraction EndRoot

Respuesta :

Answer:

The zeros are

[tex]x=-2+\frac{\sqrt{22}}{2}[/tex]

[tex]x=-2-\frac{\sqrt{22}}{2}[/tex]  

Step-by-step explanation:

we have

[tex]f(x)=2x^{2}+8x-3[/tex]

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

Equate the function to zero

[tex]2x^{2} +8x-3=0[/tex]  

so

[tex]a=2\\b=8\\c=-3[/tex]

substitute in the formula      

[tex]x=\frac{-8\pm\sqrt{8^{2}-4(2)(-3)}} {2(2)}[/tex]  

[tex]x=\frac{-8\pm\sqrt{88}} {4}[/tex] 

[tex]x=\frac{-8\pm2\sqrt{22}} {4}[/tex] 

[tex]x=-2\pm\frac{\sqrt{22}}{2}[/tex]

therefore

[tex]x=-2+\frac{\sqrt{22}}{2}[/tex]

[tex]x=-2-\frac{\sqrt{22}}{2}[/tex]  

Answer:

A

Step-by-step explanation:

on edge