Respuesta :

Answer:

[tex]\frac{7}{3} + \frac{e^2 - e}{2}[/tex]

Step-by-step explanation:

By definition:

Work done along the path is the line integral along that path denoted as:

Work Done = [tex]\int\limits^C {F} \, dr[/tex]

Note:  dr = dx i + dy j

Given that: [tex]F (x,y) = x^2 i + ye^x j[/tex]

F (x, y) dot product with dr = [tex] x^2 dx + ye^x dy[/tex]

Work done = [tex]\int\limits^C {(x^2 dx + ye^x dy)}[/tex]  ... Eq 1

Given that C: [tex]y = \sqrt{x-1}[/tex]

[tex]dy = \frac{dx}{2\sqrt{x-1} }[/tex]

Replace the value of y and dy in Eq 1

[tex]Work done =  \int\limits^C ({x^2 + \frac{e^x}{2} }) \, dx[/tex]

Limits of x are 1 to 2 respectively

[tex]Work done =  \int\limits^2_1 ({x^2 + \frac{e^x}{2} }) \, dx[/tex]

= [tex](\frac{x^3}{3} + \frac{e^x}{2})\limits^2_1[/tex]

Evaluate limits to obtain

Work Done = [tex]\frac{7}{3} + \frac{e^2 - e}{2}[/tex]