Respuesta :

Solved given expression for x using the change of base formula log base b of y equals log y over log b is 4.459

Answer: Option D

Step-by-step explanation:

Given Expression:

             [tex]2^{x-1}=11[/tex]

To solve this, first convert the exponential form into log form

If  [tex]a^{x}=b[/tex] then [tex]\log _{a}(b)=x[/tex]

So, when comparing the given expression with above,  a = 2, x = x – 1 and b = 11 .

            [tex]2^{x-1}=11[/tex] become [tex]\log _{2}(11)=x-1[/tex]

Now, apply change of base formula to remove base 3

             [tex]\log _{a}(y)=\frac{\log y}{\log a}[/tex]

Hence,

            [tex]\log _{2}(11)=\frac{\log 11}{\log 2}[/tex]

Substitute [tex]\log _{2}(11)=x-1[/tex] in above expression, we get

           [tex]\frac{\log 11}{\log 2}=x-1[/tex]

           [tex]\frac{1.0414}{0.301}=x-1[/tex]

           x – 1 = 3.459

          x = 3.459 + 1 = 4.459