contestada

Two blocks of masses M and 2M are initially traveling at the same speed v but in the opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision

Respuesta :

Answer:

Explanation:

Given

Two masses M and 2 M with velocity v in opposite direction

After collision they stick together

Initial momentum

[tex]P_i=Mv-2Mv[/tex]

final momentum

[tex]P_f=3Mv'[/tex]

Conserving momentum

[tex]P_i=P_f[/tex]

[tex]-Mv=3Mv'[/tex]

[tex]v'=\frac{v}{3}[/tex]

i.e. system moves towards the direction of 2M mass

Initial kinetic Energy [tex]K_1=\frac{1}{2}Mv^2+\frac{1}{2}2Mv^2[/tex]

[tex]K_1=\frac{3}{2}Mv^2[/tex]

Final Kinetic Energy [tex]K_2=\frac{1}{2}\cdot (3M)\cdot (\frac{v}{3})^2=\frac{3}{18}Mv^2[/tex]

loss of Energy[tex]=K_1-K_2[/tex]

[tex]=\frac{3}{2}Mv^2-\frac{3}{18}Mv^2[/tex]

[tex]=\frac{4}{3}Mv^2[/tex]

                   

The mechanical energy is lost to other forms of energy during the collision is [tex]\bold { \dfrac 43 mv^2}[/tex].

Given here,

Mass of the first object = M

Mass of the second  object = 2M

Thy are moving at same speed = v,

The initial momentum,

[tex]\bold {Pi = Mv - 2mv}[/tex]

The Final momentum,

Pf = 3 Mv'

From the conservation of momentum,

Pi = pf

Mv - 2Mv = 3mv'

[tex]\bold {v' = \dfrac v3}[/tex]

The final velocity is one-third of the initial speed.

Since, the system moves towards the direction second object,

The loss of energy  = Ki - Kf

Where,

Ki - Initial kinetic energy,

[tex]\bold {Ki = \dfrac 12 mv^2 + \dfrac 12 mv^2 = \dfrac 32 mv^2}[/tex]

Kf = final kinetic energy

[tex]\bold {Kf = \dfrac 12 (3m)(\dfrac v3)^2 = \dfrac {3}{18 } mv^2}[/tex]

Thus,

[tex]\bold {\Delta E = \dfrac 32 mv^2 - \dfrac 3{18} mv^2 }\\\\\bold {\Delta E = \dfrac 43 mv^2}[/tex]

Therefore, the mechanical energy is lost to other forms of energy during the collision is [tex]\bold { \dfrac 43 mv^2}[/tex].

To know more about energy,

https://brainly.com/question/1932868