Respuesta :

Kuroi

Answer:

y=3

Step-by-step explanation:

Lets set 4 points A(11,[tex]y_{1}[/tex]), B(2,0), C(7,5), D(-2,2)

So first we need to find a line that passes through points C and D

[tex]\left \{ {{a*7+b=5} \atop {a*(-2)+b=2}} \right.[/tex]

We subtract these two

9a=3

a=3/9

a=1/3

b=2+2*[tex]\frac{1}{3}[/tex]

b=8/3

So the line passing through C and D is [tex]\frac{1}{3}x+\frac{8}{3}=y[/tex]

We do the same for the line passing through A and B

[tex]\left \{ {{a*11+b=y_{1}} \atop {a*2+b=0}} \right.[/tex]

9*a+y

Line AB and line CD will be paraller if [tex]a_{1}= a_{2}[/tex]

So from that we know that a=1/3

So 9*(1/3)=3=y