Respuesta :

Answer:

[tex](x - 5)^{2} + (y - 6)^{2} + (z - 5)^{2} = 62[/tex]

Step-by-step explanation:

The general equation of a sphere is as follows:

[tex](x - x_{c})^{2} + (y - y_{c})^{2} + (z - z_{c})^{2} = r^{2}[/tex]

In which the center is [tex](x_{c}, y_{c}, z_{c})[/tex], and r is the radius.

In this problem, we have that:

[tex]x_{c} = 5, y_{c} = 6, z_{c} = 5[/tex].

So

[tex](x - 5)^{2} + (y - 6)^{2} + (z - 5)^{2} = r^{2}[/tex]

through the point (6, 1, −1)

We use this to find the radius.

[tex](6 - 5)^{2} + (1 - 6)^{2} + (-1 - 5)^{2} = r^{2}[/tex]

[tex]r^{2} = 1 + 25 + 36 = 62[/tex]

So the equation of the sphere is:

[tex](x - 5)^{2} + (y - 6)^{2} + (z - 5)^{2} = 62[/tex]