The half-lives for the forward and reverse reactions that are first order in both directions are 24ms and 39 ms, respectively. Calculate the corresponding relaxation time (s) for the return to equilibrium after a temperature jump. Please enter your answer with two significant figures (unit: s).

Respuesta :

Explanation:

The given data is as follows.

            [tex](t_{\frac{1}{2}})_{1}[/tex] = 24 ms,

            [tex](t_{\frac{1}{2}})_{2}[/tex] = 39 ms,

where,    [tex](t_{\frac{1}{2}})_{1}[/tex] = half-life for the forward reaction

              [tex](t_{\frac{1}{2}})_{2}[/tex] = half-life for the backward reaction

It is known that the formula for first-order reaction is as follows.

                      [tex]t_{\frac{1}{2}} = \frac{0.693}{K}[/tex]

Therefore,  

              [tex]K_{1} = \frac{0.693}{(t_{\frac{1}{2}})_{1}}[/tex]

                        = [tex]\frac{0.693}{24 ms}[/tex]

                        = 0.0289 [tex]ms^{-1}[/tex]

              [tex]K_{2} = \frac{0.693}{(t_{\frac{1}{2}})_{2}}[/tex]

                        = [tex]\frac{0.693}{39 ms}[/tex]

                        = 0.0178 [tex]ms^{-1}[/tex]

Hence, formula for the relaxation time is as follows.

               [tex]\tau = \frac{1}{K_{1} + k_{2}}[/tex]

                       = [tex]\frac{1}{(0.0289 + 0.0178) ms^{-1}}[/tex]

                       = 21.41 ms

Thus, we can conclude that the corresponding relaxation time(s) for the return to equilibrium after a temperature jump is 21.41 ms.