Answer:
There are 6,151,600,000 different 7-place license plates are possible when 3 of the entries are letters and 4 are digits,
Step-by-step explanation:
For each of the entries which are letters, there are 26 possible outcomes.
For each of the entries which are digits, there are 10 possible outcomes.
These outcomes can be permutated.
For example, ABC1234 is a different outcome than A1B2C34. This means that we need to use the permutations formula.
The number of permutations of n, divided into two groups of size a and b, is:
[tex]P_{a,b}^{n} = \frac{n!}{a!b!}[/tex].
In this problem, we have a permutation of 7, divided into a group of 4(digits) and 3(letters).
How many different 7-place license plates are possible when 3 of the entries are letters and 4 are digits?
This is [tex]P_{3,4}^{7}*(26)^{3}*10^{4} = 35*(26)^{3}*10^{4} = 6,151,600,000[/tex]
There are 6,151,600,000 different 7-place license plates are possible when 3 of the entries are letters and 4 are digits,