Respuesta :

Answer:

When adding these two equations we get the value of x is [tex]\frac{14}{3}[/tex] and y is  [tex]\frac{52}{3}[/tex]

Therefore [tex]x=\frac{14}{3}[/tex] and  and  [tex]y=\frac{52}{3}[/tex]

Step-by-step explanation:

Given two equations are [tex]5x-y=6\hfill (1)[/tex][tex]-2x+y=8\hfill (2)[/tex]To find the addition of these two given equations :

Adding the equations (1) and (2) we get

5x-y=6

-2x+y=8

_______

3x=14

[tex]x=\frac{14}{3}[/tex]

Substitute the value [tex]x=\frac{14}{3}[/tex] in equation (1) we get

[tex]5(\frac{14}{3})-y=6[/tex]

[tex]-y=6-\frac{70}{3}[/tex]

[tex]-y=\frac{18-70}{3}[/tex]

[tex]-y=-\frac{52}{3}[/tex]

Therefore   [tex]y=\frac{52}{3}[/tex]

When adding these two equations we get the value of x is [tex]\frac{14}{3}[/tex]

Therefore [tex]x=\frac{14}{3}[/tex] and   [tex]y=\frac{52}{3}[/tex]