Answer:
When adding these two equations we get the value of x is [tex]\frac{14}{3}[/tex] and y is [tex]\frac{52}{3}[/tex]
Therefore [tex]x=\frac{14}{3}[/tex] and and [tex]y=\frac{52}{3}[/tex]
Step-by-step explanation:
Given two equations are [tex]5x-y=6\hfill (1)[/tex][tex]-2x+y=8\hfill (2)[/tex]To find the addition of these two given equations :
Adding the equations (1) and (2) we get
5x-y=6
-2x+y=8
_______
3x=14
[tex]x=\frac{14}{3}[/tex]
Substitute the value [tex]x=\frac{14}{3}[/tex] in equation (1) we get
[tex]5(\frac{14}{3})-y=6[/tex]
[tex]-y=6-\frac{70}{3}[/tex]
[tex]-y=\frac{18-70}{3}[/tex]
[tex]-y=-\frac{52}{3}[/tex]
Therefore [tex]y=\frac{52}{3}[/tex]
When adding these two equations we get the value of x is [tex]\frac{14}{3}[/tex]
Therefore [tex]x=\frac{14}{3}[/tex] and [tex]y=\frac{52}{3}[/tex]