Respuesta :

Answer:

The perimeter of the rectangle can be represented as:

[tex](21t+27)\ ft[/tex]

Step-by-step explanation:

Given :

Width of the rectangle = [tex](6t-4.5)\ ft[/tex]

Length of the rectangle = [tex](4.5t+9)\ ft[/tex]

To find the perimeter of the rectangle.

Solution:

The perimeter of a rectangle is given as :

[tex]2(l+w)[/tex]

where [tex]l[/tex] represents length of the rectangle and [tex]w[/tex] represents the width of the rectangle.

Plugging in the given data of length and width to find the perimeter of the rectangle.

⇒ [tex]2(6t+4.5+4.5t+9)[/tex]

Adding like terms.

⇒ [tex]2(6t+4.5t+4.5+9)[/tex]

⇒ [tex]2(10.5t+13.5)[/tex]

Using distribution

⇒ [tex](21t+27)\ ft[/tex]

Thus, perimeter of the rectangle can be represented as:

[tex](21t+27)\ ft[/tex]   (Answer)