Archimedes' principle can be used not only to determine the specific gravity of a solid using a known liquid; the reverse can be done as well. As an example, a 4.00-kg aluminum ball has an apparent mass of 2.10 kg when submerged in a particular liquid: calculate the density of the liquid in kg/m^3

Derive a formula for determining the density of a liquid using this procedure.

Express your answer in terms of the variables mobject, mapparent, and rhoobject.

Respuesta :

Answer:

Explanation:

Given

mass of aluminium ball [tex]m_{object}=4\ kg[/tex]

apparent mass of aluminium ball in liquid [tex]m_{apparent}=2.1\ kg[/tex]

If [tex]\rho _{object}[/tex] and [tex]\rho _{liquid}[/tex] is the density of object and liquid then

mass of object can be written as

[tex]\rho _{object}\times V=4---1[/tex]

[tex]\rho _{object}\times V-\rho _{apparent}\times V=2.1----2[/tex]

where V is the volume of object

divide 1 and 2 we get

[tex]\frac{\rho _{object}\times V}{\rho _{object}\times V-\rho _{liquid}\times V}=\frac{4}{2.1}[/tex]

[tex]\frac{\rho _{object}}{\rho _{object}-\rho _{liquid}}=\frac{4}{2.1}[/tex]

[tex]\frac{\rho _{liquid}}{\rho _{object}}=\frac{4-2.1}{4}\ \ \left [ \frac{\rho _{liquid}}{\rho _{object}}=\frac{m_{object}-m_{apparent}}{m_{object}}\right ][/tex]

[tex]\rho _{liquid}=\rho _{object}\times 0.475[/tex]

Density of aluminium is [tex]2710\ kg/m^3[/tex]

[tex]\rho_{liquid}=2710\times 0.475=1287.25\ kg/m^3[/tex]