Respuesta :

Answer:

23.92

Step-by-step explanation:

We solve for y:

[tex]25x^2-4y^2=100[/tex]

[tex]y=5\sqrt{x^4/4-1}[/tex]

use trig substitution:

[tex]x=2secu[/tex]

[tex]x^2=4sec^2u[/tex]

The derivative of x is:

[tex]dx=2secutanu du[/tex]

when x=2 [tex]u=0[/tex]

when x=3 [tex]u=sec^-^1\cdot(3/2)[/tex]

The area is defined as 2xarea:

The area is the integral of the equation:

[tex]A=2\int\limits^a_b {5\sqrt{x^2/4-1} } \, dx[/tex] for range 0 to sec-1(3/2)

Substitute x=2secu

[tex]A=\int\limits^a_b 10{\sqrt{(4/4)sec^2u-1} } \, dx[/tex]

[tex]A=10\int\limits^a_b {\sqrt{sec^2i-1}23secutanu } \, du[/tex]

We know that sec²-1 = tan²u

[tex]A=20\int\limits^a_b {tan^2u secu} \, du[/tex]

[tex]A=20\int\limits^a_b {(sec^2u-1)secu} \, du[/tex]

[tex]A=20[\int\limits^a_b {sec^3u} \, du - \int\limits^a_b {secu} \, du][/tex]

After simplifying

[tex]A=10[secutanu-ln(secu+tanu)][/tex]

For the range

[tex]A=10[(3/2)\sqrt{5} /2-ln(3/2+\sqrt{5}/2)][/tex]

[tex]A=23.92[/tex]