Respuesta :
Answer:
Reduce the mass of the earth to one-fourth its normal value.
Reduce the mass of the sun to one-fourth its normal value.
Reduce the mass of the earth to one-half its normal value and the mass of the sun to one-half its normal value.
Explanation:
Every particle in the universe attracts any other particle with a force that is directly proportional to the product of its masses and inversely proportional to the square of the distance between them. So, in this case we have:
[tex]F=\frac{Gm_Em_S}{d^2}[/tex]
If [tex]m'_E=\frac{m_E}{4}[/tex]:
[tex]F'=\frac{Gm'_Em_S}{d^2}\\F'=\frac{G(\frac{m_E}{4})m_S}{d^2}\\F'=\frac{1}{4}\frac{Gm_Em_S}{d^2}\\F'=\frac{1}{4}F[/tex]
If [tex]m'_S=\frac{m_S}{4}[/tex]
[tex]F'=\frac{Gm_Em'_S}{d^2}\\F'=\frac{Gm_E(\frac{m_S}{4})}{d^2}\\F'=\frac{1}{4}\frac{Gm_Em_S}{d^2}\\F'=\frac{1}{4}F[/tex]
If [tex]m'_E=\frac{m_E}{2}[/tex] and [tex]m'_S=\frac{m_S}{2}[/tex]:
[tex]F'=\frac{Gm'_Em'_S}{d^2}\\F'=\frac{G(\frac{m_E}{2})(\frac{m_S}{2})}{d^2}\\F'=\frac{1}{4}\frac{Gm_Em_S}{d^2}\\F'=\frac{1}{4}F[/tex]