The one-time fling! Have you ever purchased an article of clothing (dress, sports jacket, etc.), worn the item once to a party, and then returned the purchase? This is called a one-time fling. About 5% of all adults deliberately do a one-time fling and feel no guilt about it! In a group of nine adult friends, what is the probability of the following? (Round your answers to three decimal places.) Answer the following:

A. no one has done a one time fling

B. at least one person has done a one time fling

c. no more than two people have done a one time fling

Respuesta :

Answer:

a) There is a 63.02% probability that no one has done an one time fling.

b) There is a 36.98% probability that at least one person has done a one time fling

c) There is a 99.15% pprobability that no more than two people have done a one time fling.

Step-by-step explanation:

For each adult, there are only two possible outcomes. Either they have done an one time fling, or they have not. This means that we use the binomial probability distribution to solve this problem.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinatios of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

In this problem we have that:

[tex]n = 9, p = 0.05[/tex]

A. no one has done a one time fling

This is P(X = 0).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{9,0}.(0.05)^{0}.(0.95)^{9} = 0.6302[/tex]

There is a 63.02% probability that no one has done an one time fling.

B. at least one person has done a one time fling

Either no one has done a one time fling, or at least one person has. The sum of the probabilities of these events is decimal 1.

So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

[tex]P(X \geq 1) = 1 - `(X = 0) = 1 - 0.6302 = 0.3698[/tex]

There is a 36.98% probability that at least one person has done a one time fling

c. no more than two people have done a one time fling

This is

[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

[tex]P(X = 1) = C_{9,1}.(0.05)^{1}.(0.95)^{8} = 0.2985[/tex]

[tex]P(X = 2) = C_{9,2}.(0.05)^{2}.(0.95)^{7} = 0.0628[/tex]

[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.6302 + 0.2985 + 0.0628 = 0.9915[/tex]

There is a 99.15% pprobability that no more than two people have done a one time fling.