The gravitational field of m1 is denoted by g1. Enter an expression for the gravitational field g1 at position la in terms of m1, la, and the gravitational constant G.

Respuesta :

Answer:

The expression of gravitational field due to mass [tex]m_![/tex] at a distance [tex]l_a[/tex]

Explanation:

We have given mass is [tex]m_1[/tex]

Distance of the point where we have to find the gravitational field is [tex]l_a[/tex]

Gravitational constant G

We have to find the gravitational filed

Gravitational field is given by [tex]g=\frac{Gm_1}{l_a^2}[/tex]

This will be the expression of gravitational field due to mass [tex]m_![/tex] at a distance [tex]l_a[/tex]

The expression for the gravitational field g₁ at position la in terms of m₁, la, and the gravitational constant G is:

[tex]g_1 = \frac{G\times m_1}{la^{2} }[/tex]

The gravitational field is the force field that exists in the space around every mass or group of masses.

The gravitational field of m₁ is denoted by g₁, and can be represented through the following expression.

[tex]g_1 = \frac{F_1}{m}[/tex]    [1]

where,

  • F₁ is the gravitational force due to m₁
  • m is the mass of the object at a distance la from m₁

We can calculate the force (F₁) between m₁ and m that are at a distance "la" using Newton's law of universal gravitation.

[tex]F_1 = G \frac{m \times m_1 }{la^{2} }[/tex]   [2]

where,

  • G is the gravitational constant

If we replace [2] in [1], we get

[tex]g_1 = \frac{G \frac{m \times m_1 }{la^{2} }}{m} = \frac{G\times m_1}{la^{2} }[/tex]

The expression for the gravitational field g₁ at position la in terms of m₁, la, and the gravitational constant G is:

[tex]g_1 = \frac{G\times m_1}{la^{2} }[/tex]

Learn more: https://brainly.com/question/15091823