Respuesta :

39h - 27d - 130

 ———————————————

       10      

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "3.1" was replaced by "(31/10)". 2 more similar replacement(s)

Step by step solution :

Step  1  :

           31

Simplify   ——

           10

Equation at the end of step  1  :

           67               31

 (((7h+(0-(——•d)))-13)+4d)-(——•h)

           10               10

Step  2  :

           67

Simplify   ——

           10

Equation at the end of step  2  :

           67              31h

 (((7h+(0-(——•d)))-13)+4d)-———

           10              10

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  10  as the denominator :

          7h     7h • 10

    7h =  ——  =  ———————

          1        10  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

7h • 10 + -67d     70h - 67d

——————————————  =  —————————

      10              10    

Equation at the end of step  3  :

   (70h - 67d)                  31h

 ((——————————— -  13) +  4d) -  ———

       10                       10

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  10  as the denominator :

         13     13 • 10

   13 =  ——  =  ———————

         1        10  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

(70h-67d) - (13 • 10)     70h - 67d - 130

—————————————————————  =  ———————————————

         10                     10      

Equation at the end of step  4  :

  (70h - 67d - 130)           31h

 (————————————————— +  4d) -  ———

         10                   10

Step  5  :

Rewriting the whole as an Equivalent Fraction :

5.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  10  as the denominator :

         4d     4d • 10

   4d =  ——  =  ———————

         1        10  

Adding fractions that have a common denominator :

5.2       Adding up the two equivalent fractions

(70h-67d-130) + 4d • 10     70h - 27d - 130

———————————————————————  =  ———————————————

          10                      10      

Equation at the end of step  5  :

 (70h - 27d - 130)    31h

 ————————————————— -  ———

        10            10

Step  6  :

Adding fractions which have a common denominator :

6.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(70h-27d-130) - (31h)     39h - 27d - 130

—————————————————————  =  ———————————————

         10                     10      

Final result :

 39h - 27d - 130

 ———————————————

       10      

Processing ends successfully