Respuesta :

Answer:

Recursive formula for geometric sequence

[tex]a_{n}=a_{n-1}\times r[/tex]

is [tex]a_{n}=a_{n-1}\times 6[/tex]

and explicit formula for geometric sequence [tex]a_{n}=a_{1}^{r-1}[/tex] is

[tex]a_{n}=(\frac{1}{2})^{6-1}[/tex]

Step-by-step explanation:

Given sequence is [tex]\frac{1}{2},3,18,108,648,...[/tex]

To find the recursive and explicit formula for this sequence:

Let [tex]a_{1}=\frac{1}{2},a_{2}=3,a_{3}=18,a_{4}=108,a_{5}=648,...[/tex]

To find the common ratio r:

[tex]r=\frac{a_{2}}{a_{1}}[/tex]

[tex]=\frac{3}{\frac{1}{2}}[/tex]

[tex]=3\times 2[/tex]

[tex]=6[/tex]

Therefore r=6

[tex]r=\frac{a_{3}}{a_{2}}[/tex]

[tex]=\frac{18}{3}[/tex]

[tex]=6[/tex]

Therefore r=6

Therefore the common ration r=6

Therefore the given sequence is geometric sequence

Recursive formula for geometric sequence is [tex]a_{n}=a_{n-1}\times r[/tex]

[tex]a_{n}=a_{n-1}\times 6[/tex]

and explicit formula is [tex]a_{n}=a_{1}^{r-1}[/tex]

[tex]a_{n}=(\frac{1}{2})^{6-1}[/tex]

[tex]=(\frac{1}{2})^{5}[/tex]

[tex]=\frac{1}{32}[/tex]

Therefore [tex]a_{n}=\frac{1}{32}[/tex]

Answer:

Recursive: a(n) = 6a(n-1)

Explicit: a(n) = (6^n)/12

Step-by-step explanation:

3 = 6 × ½

18 = 6 × 3

.

.

.

Recursive formula:

a(n) = 6a(n-1)

Explicit:

a(n) = a × r^(n-1)

a(n) = ½ × 6^(n-1)

a(n) = (6^n)/12