Answer:
The height of the triangle is: [tex]H = (5x^2 + x +3)[/tex]
Step-by-step explanation:
Here, the area the triangle is given as: [tex]15x^4 + 3x^3 + 4x^2 - x - 3[/tex]
Also, base of the triangle = [tex](6x^2 -2)[/tex]
Let us assume the height of the triangle = H units
Now, AREA of TRIANGLE = [tex]\frac{1}{2} \times B \times H[/tex]
[tex]\implies (15x^4+3x^3+4x^2-x-3 ) = \frac{1}{2} \times ( 6x^2-2) \times H\\\implies H =\frac{ (15x^4+3x^3+4x^2-x-3 )}{(3x^2-1)}[/tex]
Solving by LONG DIVISION, we get:
[tex]H = (5x^2 + x +3)[/tex]
Hence, the height of the triangle is: [tex]H = (5x^2 + x +3)[/tex]