Michael Beasley is shooting free throws. Making or missing free throws doesn't change the probability that he will make his next one, and he makes his free throws 75%, percent of the time. What is the probability of Michael Beasley making all of his next 4 free throw attempts?
A. .75^8
B. .375^4
C. .75^4
D. 1.50^2

Respuesta :

Answer: C.  [tex]0.75^4[/tex]

Step-by-step explanation:

Let x be the binomial variable that denotes the number of makes.

Since each throw is independent from the other throw , so we can say it follows Binomial distribution .

So [tex]X\sim Bin(n=4 , p=0.75)[/tex]

Binomial distribution formula: The probability of getting x success in n trials :

[tex]P(X=x)=^nC_xp^n(1-p)^{n-x}[/tex] , where p = probability of getting success in each trial.

Then, the probability of Michael Beasley making all of his next 4 free throw attempts will be :

[tex]P(X=4)=^4C_4(0.75)^4(1-0.75)^{0}[/tex]

[tex]=(1)(0.75)^4(1)\ \ [\because\ ^nC_n=1]\\\\=(0.75)^4[/tex]

Thus, the probability of Michael Beasley making all of his next 4 free throw attempts is [tex]=0.75^4[/tex]

Hence, the correct answer is C.  [tex]0.75^4[/tex].

Answer:

C. 0.75^4

Step-by-step explanation:

Khan Academy