To navigate, a porpoise emits a sound wave that has a wavelength of 3.3 cm. The speed at which the wave travels in seawater is 1522 m/s. Find the period of the wave.

Respuesta :

Answer:

[tex]2.2\times 10^{-5} s[/tex]

Explanation:

We are given that  

The wavelength of sound wave=[tex]\lambda=3.3 cm=3.3\times 10^{-2}m/s[/tex]

1 cm/s=[tex]10^{-2}m/s[/tex]

Speed of sound wave,v=[tex]1522 m/s[/tex]

We have to find the period of the wave.

We know that

Frequency=[tex]\nu=\frac{v}{\lambda}[/tex]

Using the formula

Frequency =[tex]\frac{1522}{3.3\times 10^{-2}}=4.6\times 10^{4}[/tex] Hz

Time period=[tex]\frac{1}{4.6\times 10^4}=0.22\times 10^{-4}\times \frac{10}{10^1}=2.2\times 10^{-4-1}=2.2\times 10^{-5}s[/tex]

Using identity:[tex]\frac{a^x}{a^y}=a^{x-y}[/tex]

Hence, the time period of the wave=[tex]2.2\times 10^{-5} s[/tex]