Answer:
a) compressed adiabatically:
T2 = 576.8 K
ΔU = 3422 J/mol
b) cooled at P contant to 30°C:
Q = - 5965.04 J/mol
c) expanded isotermally to P=100 KPa:
W = - 4054.403 J
Explanation:
ideal gas in a mechanically reversible process:
∴ T1 = 30°C = 303 K
∴ P1 = 100 KPa
a) compressed adiabatically to 500 KPa:
⇒ ΔU = W = CvΔT.....(1)
∴ Cv = (3/2)R = 12.5 J/K.mol
∴ W = - PδV........(2)
(1) = (2):
⇒ [(R+Cv)/R] Ln (T2/T1) = Ln (P2/P1)
∴ R+Cv/R = 5/2
⇒ (5/2) Ln(T2/T1) = 1.6094
⇒ LnT2 - LnT1 = 0.64376
⇒ LnT2 = 0.64376 + 5.7137 = 6.3575
⇒ T2 = 576.8 K
⇒ ΔU = W = (12.5 J/K.mol)(576.8 - 303 ) = 3422 J/mol
b)n cooled at constant P = 500KPa to 30°C:
∴ T2 = 303 K
∴ T1 = 576.8 K
∴ ΔU = Q + W
⇒ Q = CpΔT
∴ Cp = (5/2)R = 20.8 J/K.mol
⇒ Q = (20.8 J/K.mol)(303 - 576.8)
⇒ Q = - 5695.04 J/mol
c) expanded isothermally a P=100 KPa
∴ ΔU = 0
∴ T = 303 K
∴ P1 = 500 KPa
∴ P2 = 100 KPa
∴ W = nRT Ln(P2/P1)......assuming n = 1 mol
⇒ W = (1 mol)(8.314 J/K,mol)(303 K) Ln(100/500)
⇒ W = - 4054.403 J