Phosphorus crystallizes in several different forms, one of which is a simple cube with an edge length of 238 pm. What is the density of phosphorus in the simple cubic crystal form?

Respuesta :

Answer: The density of phosphorus is [tex]3.81g/cm^3[/tex]

Explanation:

To calculate the density of phosphorus, we use the equation:

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell = 1  (CCP)

M = atomic mass of phosphorus = 31 g/mol

[tex]N_{A}[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]

a = edge length of unit cell = [tex]238pm=238\times 10^{-10}cm[/tex]    (Conversion factor:  [tex]1cm=10^{10}pm[/tex]  )

Putting values in above equation, we get:

[tex]\rho=\frac{1\times 31}{6.022\times 10^{23}\times (238\times 10^{-10})^3}\\\\\rho=3.81g/cm^3[/tex]

Hence, the density of phosphorus is [tex]3.81g/cm^3[/tex]