Missing term = –2xy
Solution:
Let us first find the quotient of [tex]-8x^2y^3 \div xy[/tex].
[tex]-8x^2y^3 \div xy=\frac{-8x^2y^3 }{xy}[/tex]
[tex]=\frac{-8\times x\times x\times y\times y\times y}{xy}[/tex]
Taking common term xy outside in the numerator.
[tex]=\frac{xy(-8\times x\times y\times y)}{xy}[/tex]
Both xy in the numerator and denominator are cancelled.
[tex]=-8xy^2[/tex]
Thus, the quotient of [tex]-8x^2y^3 \div xy[/tex] is [tex]-8xy^2[/tex].
Given the quotient of [tex]-8x^2y^3 \div xy[/tex] is same as the product of 4xy and ____.
[tex]-8xy^2=4xy[/tex] × missing term
Divide both sides by 4xy, we get
⇒ missing term = [tex]\frac{-8xy^2}{4xy}[/tex]
Cancel the common terms in both numerator and denominator.
⇒ missing term = –2xy
Hence the missing term of the product is –2xy.