Suppose 0.10 mol of Cu(NO_3)_2 and 1.50 mol of NH_3 are dissolved in water and diluted to a total volume of 1.00 L. Calculate the concentrations of Cu(NH_3)_4^2+ and of Cu^2+ at equilibrium.

Respuesta :

Explanation:

It is known that the coefficients change in concentration and in the exponents.  Hence, the reaction equation will be as follows.

     [tex]Cu^{2+}(aq) + 4NH_{3}(aq) \rightarrow Cu(NH_{3})^{2}_{4}(aq)[/tex]

According to the ICE table,

      [tex]Cu^{2+}(aq) + 4NH_{3}(aq) \rightarrow Cu(NH_{3})^{2}_{4}(aq)[/tex]

Initial :    0.10         1.50                        0

Change : -x         -4x                        +x

Equilibrium: 0.10 - x  1.50 - 4x            x  

Hence, the mass action expression is as follows.

    [tex]K_{f} = \frac{[Cu(NH3)^{2+}_{4}]}{[Cu^{2+}][NH_{3}]_{4}}[/tex]

                        = [tex]\frac{x}{(0.10 - x)(1.50 - 4x)^{4}}[/tex]

As, the value of is huge, it means that the reaction is very product favored. Hence, we need to find the limiting reactant first and then  we get to know what x should be.

In the given reaction ammonia is the limiting reactant, because there is less than 4 times the ammonia as the copper cation. Thus, we expect it to run out first, and so, x is approximately equal to 0.25 M.

So, putting the given values into the above equation as follows.

   [tex]1.03 \times 10^{13} = \frac{0.25}{(0.10 - 0.25)(1.50 - 4x)}^{4}[/tex]

                              =

From here

   [tex][NH_{3}] = 1.50 - 4x = (\frac{2.33}{1.03 \times 10^{13}})^{\frac{1}{4}[/tex]

                       = M

Therefore, we can "re-solve" for x to get and verify that it is still ≈0.250 M.

                x = [tex][Cu(NH_{3})^{2+}_{4}][/tex]

                  = [tex]\frac{1.50 - 2.31284 \times 10{-4}}{4}][/tex]

                    = 0.37491425 M

Thus, we can conclude that concentration of ([tex]Cu^{2+}[/tex]) is  0.37491425 M.