Respuesta :

Answer:

[tex]y=sinx +Ccos x[/tex]

Step-by-step explanation:

We are given that differential equation

[tex]cosx \frac{dy}{dx}+sinx y=1[/tex]

Divide by cos x on both sides

[tex]\frac{dy}{dx}+\frac{sinx }{cos x}y=\frac{1}{cos x}[/tex]

[tex]\frac{dy}{dx}+tanx y=sec x[/tex]

Using formula:[tex]tanx=\frac{sinx}{cosx },sec x=\frac{1}{cos x}[/tex]

Compare with first order first degree differential equation

[tex]\frac{dy}{dx}+P(x)y=Q(x)[/tex]

We get [tex]P(x)=tanx[/tex]

Q(x)=[tex]sec x[/tex]

I.F=[tex]e^{\int P(x)dx}=e^{\int tanxdx}=e^{lnsecx}=sec x[/tex]

Using formula :[tex]\int tanx dx=ln secx [/tex]

[tex]e^{lna}=a[/tex]

Then solution

[tex]y\times I.F=\int Q(x)\times I.F dx+C[/tex]

Using this

[tex]y\times sec x=\int sec x\times sec xdx+C[/tex]

[tex] y sec x=\int sec^2 xdx+C[/tex]

[tex]y sec x=tanx +C[/tex]

Using formula :[tex]\int sec^2 xdx=tanx [/tex]

[tex]y=\frac{tanx }{sec x}+\frac{C}{sec x}[/tex]

[tex] y=\frac{sinx }{cos x}\times cos x+Ccos x[/tex]

[tex]y=sinx +Ccos x[/tex]