Respuesta :

Answer:

The perimeter of an equilateral triangle that has a height of 24m is

Option C : 48 square root 3

Step-by-step explanation:

Given:

Height of the triangle =24 m

To Find:

The perimeter of an equilateral triangle  = ?

Solution:

Perimeter of the equilateral  triangle  =  3a

where a is the side of the triangle

Here the height is given as 24 m

Then from the figure

[tex]Sin(60^{\circ}) = \frac{opposite}{hypotenuse}[/tex]

[tex]Sin(60^{\circ}) = \frac{24}{x}[/tex]

[tex]x = \frac{24}{Sin(30^{\circ})}[/tex]

[tex]x= \frac{24}{\frac{\sqrt{3}}{2}}[/tex]

[tex]x = \frac{24 \times2}{\sqrt{3}}[/tex]

[tex]x = \frac{48}{\sqrt{3}}[/tex]

Now

The perimeter is

=> 3x

=>[tex]3 \times \frac{48}{\sqrt{3}}[/tex]-------------------------(1)

Now we know that 3 = [tex]\sqrt{3} \times \sqrt{3}[/tex]--------------------(2)

Substituting (2) in (1)

=>[tex](\sqrt{3} \times \sqrt{3}) \times \frac{48}{\sqrt{3}}[/tex]

=>[tex]48\sqrt{3}[/tex]

Ver imagen nandhini123