021 (part 1 of 2) 10.0 points
A student sits on a rotating stool holding two
4 kg objects. When his arms are extended
horizontally, the objects are 0.7 m from the
axis of rotation, and he rotates with angular
speed of 0.69 rad/sec. The moment of iner-
tia of the student plus the stool is 4 kg mº
and is assumed to be constant. The student
then pulls the objects horizontally to a radius
0.29 m from the rotation axis.
(D.
T
TZ
Calculate the final angular speed of the
student.
Answer in units of rad/s.
022 (part 2 of 2) 10.0 points
Calculate the change in kinetic energy of the
system.
Answer in units of J.

Respuesta :

Answers:

a) [tex]1.17 rad/s[/tex]

b) [tex]1.31 J[/tex]

Explanation:

a) We can solve this knowing the angular momentum [tex]L[/tex] is conserved, then:

[tex]L_{o}=L_{f}[/tex]

[tex]I_{o} \omega_{o}=I_{f} \omega_{f}[/tex] (1)

Where:

[tex]I_{o}[/tex] is the initial moment of inertia of the system

[tex]\omega_{o}=0.69 rad/s[/tex] is the initial angular velocity

[tex]I_{f}[/tex] is the final moment of inertia of the system

[tex]\omega_{f}[/tex] is the final angular velocity

But first, we have to find [tex]I_{o}[/tex] and [tex]I_{f}[/tex]:

[tex]I_{o}=I_{s}+2mr_{o}^{2}[/tex] (2)

[tex]I_{f}=I_{s}+2mr_{f}^{2}[/tex] (3)

Where:

[tex]I_{s}=4 kgm^{2}[/tex] is the student's moment of inertia

[tex]m=4 kg[/tex] is the mass of each object

[tex]r_{o}=0.7 m[/tex] is the initial radius

[tex]r_{f}=0.29 m[/tex] is the final radius

Then:

[tex]I_{o}=4 kgm^{2}+2(4 kg)(0.7 m)^{2}=7.92 kgm^{2}[/tex] (4)

[tex]I_{f}=4 kgm^{2}+2(4 kg)(0.29 m)^{2}=4.67 kgm^{2}[/tex] (5)

Substituting the results of (4) and (5) in (1):

[tex](7.92 kgm^{2}) (0.69 rad/s)=4.67 kgm^{2}\omega_{f}[/tex] (6)

Finding [tex]\omega_{f}[/tex]:

[tex]\omega_{f}=1.17 rad/s[/tex] (7) This is the final angular velocity

b) The rotational kinetic energy is:

[tex]K=\frac{1}{2}I \omega^{2}[/tex] (8)

The change in kinetic energy is:

[tex]\Delta K=\frac{1}{2}I_{f} \omega_{f}^{2}-\frac{1}{2}I_{o} \omega_{o}^{2}[/tex] (9)

Since we already calculated these values, we can solve (9):

[tex]\Delta K=\frac{1}{2}(4.67 kgm^{2}) (1.17 rad/s)^{2}-\frac{1}{2}(7.92 kgm^{2}) (0.69 rad/s)^{2}[/tex] (10)

Finally:

[tex]\Delta K=1.31 J[/tex]