How is the sum expressed in sigma notation?
11 + 17 + 23 + 29 + 35 + 41

Answer:
The given sums 11+17+23+29+35+41 can be written as in sigma notation is [tex]\sum\limits_{i=1}^{6}5+6i[/tex]
Therefore 11+17+23+29+35+41=[tex]\sum\limits_{i=1}^{6}5+6i[/tex]
Step-by-step explanation:
Given series is 11+17+23+29+35+41
To find the given sum expressed in sigma notation :
11+17+23+29+35+41 can be written as the given sums in sigma notation is [tex]\sum\limits_{i=1}^{6}5+6i[/tex]
That is
11+17+23+29+35+41=[tex]\sum\limits_{i=1}^{6}5+6i[/tex]
Now expand the sums and to verify that whether the summation is true or not :
[tex]\sum\limits_{i=1}^{6}5+6i=(5+6(1))+(5+6(2))+(5+6(3))+(5+6(4))+(5+6(5))+(5+6(6))[/tex]
[tex]=(5+6)+(5+12)+(5+18)+(5+24)+(5+30)+(5+36)[/tex]
[tex]=11+17+23+29+35+41[/tex]
Therefore 11+17+23+29+35+41=[tex]\sum\limits_{i=1}^{6}5+6i[/tex]
The sum can be expressed as [tex]\sum_{(i=1)}^6 = 5+6i[/tex].
As we can see in the following series,
Every number in the series can be expressed in the form of (5+6i) where i is the position of the series,
The sum can be verified by expanding the sum from i=1 to6.
[tex]\sum_{(i=1)}^6 = 5+6i\\\sum_{(i=1)}^6 = [5 + 6(1)]+[5 + 6(2)]+[5 + 6(3)]+[5 + 6(4)]+[5+ 6(5)]+[5 + 6(6)]\\\sum_{(i=1)}^6 = 11 + 17 + 23 + 29 + 35 + 41\\\sum_{(i=1)}^6 = 156[/tex]
therefore, the sum can be expressed as,
[tex]\sum_{(i=1)}^6 = 5+6i[/tex].
Learn more about sigma notation:
https://brainly.com/question/4302552?referrer=searchResults