Respuesta :

The value of b is -12

Solution:

The given equation, b (b + 12) = 0

On distributing the b inside the parentheses we get,

[tex]\Rightarrow\bold{ b\times b+b\times12=0}[/tex]

[tex]\bold{\Rightarrow b^{2}+12b=0}[/tex]

[tex]\bold{\Rightarrow b^{2}=-12b}[/tex]

[tex]\bold{\Rightarrow 1=\frac{-12b}{b^2}}[/tex]

[tex]\bold{\Rightarrow 1=\frac{-12}{b}}[/tex]

[tex]\bold{\Rightarrow b=-12}[/tex]

Steps to use distributive property to solve an equation:

  • Multiply the term outside of the parentheses by each term in the parentheses.
  • Distribute a negative number together with its negative sign.
  • Combine like terms
  • Solve the equation.

For fractions:

  • Identify any fractional coefficients or constants.
  • Find the lowest common multiple (LCM) for all denominators.
  • Multiply all terms of the equation by the LCM.
  • Combine like terms and solve the equation.