Respuesta :

The solution is [tex](1,1)[/tex]

Step-by-step explanation:

The system of linear equation is

[tex]y=-3x+4[/tex] and [tex]y+\frac{1}{3} y=\frac{4}{3}[/tex]

Using substitution method, let us substitute [tex]y=-3x+4[/tex] in the equation

[tex]y+\frac{1}{3} y=\frac{4}{3}[/tex]

[tex]-3 x+4+\frac{1}{3}(-3 x+4)=\frac{4}{3}[/tex]

Multiplying the term [tex]-3x+4[/tex] by [tex]\frac{1}{3}[/tex], we get,

[tex]-3 x+4-x+\frac{4}{3}=\frac{4}{3}[/tex]

Subtracting both sides by [tex]\frac{4}{3}[/tex],

[tex]-3x+4-x=0[/tex]

Simplifying, we get,

[tex]\begin{aligned}-4 x+4 &=0 \\-4 x &=-4 \\x &=1\end{aligned}[/tex]

Now, substitute [tex]x=1[/tex] in [tex]y=-3x+4[/tex]

[tex]y=-3(1)+4\\y=-3+4\\y=1[/tex]

Thus, the solution is [tex](1,1)[/tex]

Answer:

y = -3x + 4

x + 1/3y = 4/3

Substitute the first expression into the second equation for y:

x + 1/3(-3x + 4) = 4/3

x - x + 4/3 = 4/3

4/3 = 4/3

Thus, all real numbers are solutions.

Step-by-step explanation:

HOPE THIS HELPS, GOOD-LCK, and Brainliest, also let me know if i am wrong.