Respuesta :

The solutions of the polynomial are  [tex]x=-\frac{1}{2}+\frac{3}{2}i[/tex]  ,  [tex]x=-\frac{1}{2}-\frac{3}{2}i[/tex]

Step-by-step explanation:

The solutions of a polynomial is the value of x when the polynomial equal to zero

The formula of quadratic polynomial is [tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}}{2a}[/tex] , where

  • a is the coefficient of x²
  • b is the coefficient of x
  • c is the numerical term

∵ The polynomial is 4x² - 4x + 10

- Equate it by zero to find its solutions

∴ 4x² - 4x + 10 = 0

∵ The coefficient of x² is 4

a = 4

∵ The coefficient of x is -4

b = -4

∵ The numerical term is 10

c = 10

- Use the formula to find the values of x

∵ [tex]x=\frac{(-4)(+/-)\sqrt{(-4)^{2}-4(4)(10)}}{2(4)}[/tex]

∴ [tex]x=\frac{-4(+/-)\sqrt{16-160}}{8}[/tex]

∴ [tex]x=\frac{-4(+/-)\sqrt{-144}}{8}[/tex]

∵ [tex]\sqrt{-144}=12\sqrt{-1}[/tex]

- Substitute  [tex]\sqrt{-1}[/tex]  by i

∴ [tex]12\sqrt{-1}=12i[/tex]

∴ [tex]x=\frac{-4(+/-)12i}{8}[/tex]

- Divide up and down by 4 to simplify the fraction

∴ [tex]x=-\frac{1}{2}+\frac{3}{2}i[/tex]   ,   [tex]x=-\frac{1}{2}-\frac{3}{2}i[/tex]

The solutions of the polynomial are  [tex]x=-\frac{1}{2}+\frac{3}{2}i[/tex]  ,  [tex]x=-\frac{1}{2}-\frac{3}{2}i[/tex]

Learn more:

You can learn more about the quadratic formula in brainly.com/question/8196933

#LearnwithBrainly